Gromov pre-compactness theorems for nonreversible Finsler manifolds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Galloway’s compactness theorem on Finsler manifolds

The compactness theorem of Galloway is a stronger version of the Bonnet-Myers theorem allowing the Ricci scalar to take also negative values from a set of real numbers which is bounded below. In this paper we allow any negative value for the Ricci scalar, and adding a condition on its average, we find again that the manifold is compact and provide an upper bound of its diameter. Also, with no c...

متن کامل

Some Rigidity Theorems for Finsler Manifolds

This is a survey article on global rigidity theorems for complete Finsler manifolds without boundary.

متن کامل

Critical Point Theorems on Finsler Manifolds

In this paper we consider a dominating Finsler metric on a complete Riemannian manifold. First we prove that the energy integral of the Finsler metric satisfies the Palais-Smale condition, and ask for the number of geodesics with endpoints in two given submanifolds. Using Lusternik-Schnirelman theory of critical points we obtain some multiplicity results for the number of Finsler-geodesics betw...

متن کامل

Some Rigidity Theorems for Finsler Manifolds of Sectional Flag Curvature

In this paper we study some rigidity properties for Finsler manifolds of sectional flag curvature. We prove that any Landsberg manifold of non-zero sectional flag curvature and any closed Finsler manifold of negative sectional flag curvature must be Riemannian.

متن کامل

Compactness Theorems for Riemannian Manifolds with Boundary and Applications

of the Dissertation Compactness Theorems for Riemannian Manifolds with Boundary and Applications

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and its Applications

سال: 2010

ISSN: 0926-2245

DOI: 10.1016/j.difgeo.2010.04.006